Neuromorphic and biological learning
Python demonstration
STDP demonstration:
import numpy as np
import matplotlib.pyplot as plt
A_W_P = lambda w: 1
tau_p = 0.01
w = 0
dt_space = np.linspace(-0.05, 0.05, 100)
def dw (dt):
if dt < 0:
return A_W_P(w) * np.exp(dt/tau_p)
if dt == 0:
return 1
return -A_W_P(w) * np.exp(-dt/tau_p)
dw_value = [dw(dt) for dt in dt_space]
plt.plot(dt_space, dw_value)Check the results!
Python / BRIAN demonstration
Imports:
Model creation:
Simulating:
Plotting:
Results:

Visualizing weight change for neurons with different correlations:
Result:

Last updated
Was this helpful?