The cable equation

Chapter 6.2

Read chapter 6.2

Python / NEURON demonstration

Imports:

from neuron import h, gui
import numpy as np
import matplotlib.pyplot as plt

Model definition (stick and ball):

soma = h.Section(name='soma') 
soma.L = soma.diam = 12.6157 # [um]
soma.Ra = 100                # Axial resistance [Ohm * cm]
soma.cm = 1                  # Membrane capacitance [uF / cm^2]
soma.insert('hh')            # Insert active Hodgkin-Huxley current in the soma
soma.gnabar_hh = 0.12        # Sodium conductance [S/cm2]
soma.gkbar_hh = 0.036        # Potassium conductance [S/cm2]
soma.gl_hh = 0.0003          # Leak conductance [S/cm2]
soma.el_hh = -54.3           # Reversal potential [mV]

dend = h.Section(name='dend')
dend.L = 200       # [um]
dend.nseg = 101
dend.Ra = 100      # Axial resistance [Ohm * cm]
dend.cm = 1        # Membrane capacitance [uF / cm^2]
dend.diam = 1      # [um]
dend.insert('pas') # Insert passive current in the dendrite
dend.g_pas = 0.001 # Passive conductance [S/cm2] 
dend.e_pas = -65   # Leak reversal potential [mV]
dend.connect(soma(1)) 

Stimulation:

Recording vectors:

Simulation parameters:

Simulating:

Plotting:

Resulted below threshold dynamic:

Resulted above threshold dynamic:

Modeling for various resulutions:

Results:

Last updated

Was this helpful?