Neuromorphic Engineering Book
  • Welcome
  • Preliminaries
    • About the author
    • Preface
    • A tale about passion and fear
    • Before we begin
  • I. Introduction
    • 1. Introducing the perspective of the scientist
      • From the neuron doctrine to emergent behavior
      • Brain modeling
      • Take away lessons
    • 2. Introducing the perspective of the computer architect
      • Limits of integrated circuits
      • Emerging computing paradigms
      • Brain-inspired hardware
      • Take away lessons
      • Errata
    • 3. Introducing the perspective of the algorithm designer
      • From artificial to spiking neural networks
      • Neuromorphic software development
      • Take home lessons
  • II. Scientist perspective
    • 4. Biological description of neuronal dynamics
      • Potentials, spikes and power estimation
      • Take away lessons
      • Errata
    • 5. Models of point neuronal dynamic
      • Tutorial - models of point neuronal processes
        • The leaky integrate and fire model
        • The Izhikevich neuron model
        • The Hodgkin-Huxley neuron model
      • Synapse modeling and point neurons
      • Case study: a SNN for perceptual filling-in
      • Take away lessons
    • 6. Models of morphologically detailed neurons
      • Morphologically detailed modeling
      • The cable equation
      • The compartmental model
      • Case study: direction-selective SAC
      • Take away lessons
    • 7. Models of network dynamic and learning
      • Circuit taxonomy, reconstruction, and simulation
      • Case study: SACs' lateral inhibition in direction selectivity
      • Neuromorphic and biological learning
      • Take away lessons
      • Errate
  • III. Architect perspective
    • 8. Neuromorphic Hardware
      • Transistors and micro-power circuitry
      • The silicon neuron
      • Case study: hardware - software co-synthesis
      • Take away lessons
    • 9. Communication and hybrid circuit design
      • Neural architectures
      • Take away lessons
    • 10. In-memory computing with memristors
      • Memristive computing
      • Take away lessons
      • Errata
  • IV. Algorithm designer perspective
    • 11. Introduction to neuromorphic programming
      • Theory and neuromorphic programming
      • Take away lessons
    • 12. The neural engineering framework
      • NEF: Representation
      • NEF: Transformation
      • NEF: Dynamics
      • Case study: motion detection using oscillation interference
      • Take away lessons
      • Errate
    • 13. Learning spiking neural networks
      • Learning with SNN
      • Take away lessons
Powered by GitBook
On this page
  • Brain organoids
  • Computational brain modeling
  • Neuromorphic Brain Modeling

Was this helpful?

  1. I. Introduction
  2. 1. Introducing the perspective of the scientist

Brain modeling

Chapter 1.2

PreviousFrom the neuron doctrine to emergent behaviorNextTake away lessons

Last updated 3 years ago

Was this helpful?

Read the introduction to Chapter 1.2

Brain organoids

Learn about brain organoids in this short video by :

Read Chapter 1.2.1

Computational brain modeling

Read Chapter 1.2.2

Detailed brain Modeling by The Blue Brain Project:

Neuromorphic Brain Modeling

Read Chapter 1.2.3

Two minutes about brain modeling by the:

discusses how he used the neuromorphic board, to model the human brain.

discussed neuromorphic brain modeling from the lenses of the neuromorphic circuit

Allan Institute
Stephen Furber
SpiNNaker
Kwabena Boahen
NeuroGrid
Ted-Ed
Madeline Lancaster