Neuromorphic Engineering Book
  • Welcome
  • Preliminaries
    • About the author
    • Preface
    • A tale about passion and fear
    • Before we begin
  • I. Introduction
    • 1. Introducing the perspective of the scientist
      • From the neuron doctrine to emergent behavior
      • Brain modeling
      • Take away lessons
    • 2. Introducing the perspective of the computer architect
      • Limits of integrated circuits
      • Emerging computing paradigms
      • Brain-inspired hardware
      • Take away lessons
      • Errata
    • 3. Introducing the perspective of the algorithm designer
      • From artificial to spiking neural networks
      • Neuromorphic software development
      • Take home lessons
  • II. Scientist perspective
    • 4. Biological description of neuronal dynamics
      • Potentials, spikes and power estimation
      • Take away lessons
      • Errata
    • 5. Models of point neuronal dynamic
      • Tutorial - models of point neuronal processes
        • The leaky integrate and fire model
        • The Izhikevich neuron model
        • The Hodgkin-Huxley neuron model
      • Synapse modeling and point neurons
      • Case study: a SNN for perceptual filling-in
      • Take away lessons
    • 6. Models of morphologically detailed neurons
      • Morphologically detailed modeling
      • The cable equation
      • The compartmental model
      • Case study: direction-selective SAC
      • Take away lessons
    • 7. Models of network dynamic and learning
      • Circuit taxonomy, reconstruction, and simulation
      • Case study: SACs' lateral inhibition in direction selectivity
      • Neuromorphic and biological learning
      • Take away lessons
      • Errate
  • III. Architect perspective
    • 8. Neuromorphic Hardware
      • Transistors and micro-power circuitry
      • The silicon neuron
      • Case study: hardware - software co-synthesis
      • Take away lessons
    • 9. Communication and hybrid circuit design
      • Neural architectures
      • Take away lessons
    • 10. In-memory computing with memristors
      • Memristive computing
      • Take away lessons
      • Errata
  • IV. Algorithm designer perspective
    • 11. Introduction to neuromorphic programming
      • Theory and neuromorphic programming
      • Take away lessons
    • 12. The neural engineering framework
      • NEF: Representation
      • NEF: Transformation
      • NEF: Dynamics
      • Case study: motion detection using oscillation interference
      • Take away lessons
      • Errate
    • 13. Learning spiking neural networks
      • Learning with SNN
      • Take away lessons
Powered by GitBook
On this page

Was this helpful?

  1. IV. Algorithm designer perspective

11. Introduction to neuromorphic programming

Chapter 11

PreviousErrataNextTheory and neuromorphic programming

Last updated 3 years ago

Was this helpful?

This chapter will take the first few steps toward neuromorphic programming. We will start with emerging theoretical concepts on neuromorphic computing (e.g., complexity theory) and move on to neural codes. Key neuromorphic programming paradigms will be discussed, ranging from low-level PyNN programming which was utilized for the SpiNNaker to Corelet, developed by IBM Research to support high-level neuromorphic programming for the TrueNorth chip. Finally, we will dis- cuss key algorithms for training SNNs toward supervised neuromorphic machine learning.